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An exact nonreflecting boundary condition was derived previously for time-
dependent elastic waves in three space dimensi®i#sM J. Appl. Math60, 803
(2000)]. It is local in time, nonlocal on the artificial boundary, and involves only
first derivatives of the displacement. Here it is shown how to combine that bound-
ary condition with finite difference and finite element methods. Stability issues are
discussed. Numerical examples with a finite difference method demonstrate the high
improvement in accuracy over standard methodg.2000 Academic Press
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1. INTRODUCTION

We wish to calculate numerically the time dependent wave fi¢ldt) scattered from
a bounded scattering region in an unbounded three-dimensional elastic medium. In
region, there may be one or more scatterers and the equation for the displacement
have variable coefficients and nonlinear terms. As usual, we surround the scattering re
by an artificial boundary3 and confine the computation to the regi@nbounded by3.
Then, to complete the formulation of the problentimnwve require that satisfy a boundary
condition on3. The boundary conditions commonly imposed produce spurious reflecti
from B. To avoid this spurious reflection we have devised an exact nonreflecting bound
condition [1]. It is the extension to the elastic wave equation of the exact nonreflect
boundary condition which we derived for the scalar wave equation [2, 3] and for Maxwel
equations [4]. In doing so, we chosdo be a sphere of radiuR, and we assumed that the
elastic medium is homogeneous and isotropic outsidéhe boundary condition is local
in time and nonlocal o8, and it involves only first derivatives af on B.

Usually various approximate boundary conditions are used, which are local differen
operators or3—see for instance Givoli [5] or the recent review article by Tsynkov [6]
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Well-known examples are the “viscous” boundary conditions by Lysmer and Kuhleme)
[7], and the paraxial boundary conditions by Clayton and Engquist [8] and Engquist a
Majda [9, 10]. Higdon [11, 12] constructed absorbing boundary conditions, which perfec
annihilate impinging waves at selected angles of incidence, but not at others, by combir
first-order differential operators in time and the normal space variable. Earlier, Lindman [
devised a nonlocal absorbing boundary condition for the scalar wave equation. It requ
solving the inhomogeneous wave equation on the artificial boundary a number of tin
Randall[14, 15] extended it to the elastic wave equation by applying the absorbing bounc
condition of Lindman to a decomposition of the displacement into potentials which satic
acoustic wave equations; this procedure requires at each time step a Fourier transfor
the tangential space variables.

A different approach to eliminating reflection has been to append an artificial transiti
layer outside3, which is supposed to absorb outgoing waves. Two popular methods f
doing this, the mapping technique [16] and the perfectly matched layer method [17], w
adapted recently to the absorbtion of elastic waves, and they yielded comparable results

Neither the local boundary conditions nor the use of absorbing layers leads to comp
absorption of waves at all angles of incidence. Although most approximate boundary ¢
ditions perform well at nearly normal incidence, their performance degrades rapidly
grazing incidence is approached. In complex situations the scattered waves arrive at th
tificial boundary from all interior angles and at all frequencies, so these methods then yi
some spurious reflection. Moreover, errors due to spurious reflection accumulate with t
and prevent accurate long-time integration. Thus it is often necessary toffrfavdrom
the region of interest, or to use a thick absorbing layer, to reduce the amount of reflec
below a few percent and to achieve high accuracy. Another difficulty is that approxim:
boundary conditions can result in ill-posed formulations—see Howell and Trefethen [1¢

Some of these difficulties are avoided by exact nonreflecting boundary conditions.
the frequency domain, Givoli and Keller [20] derived a Dirichlet-to-Neumann map for twe
dimensional elastodynamics; it was further developed by Harari and Shohet [21]. In the ti
domain, an exact nonreflecting boundary condition for the wave equation was propose«
Ting and Miksis [22] and later implemented by Givoli and Cohen [23]. It is based on
Kirchhoff integral representation of the solution Brand requires storing the solution at a
surface insidé3 for the length of time it takes a wave to propagate acfdsEo update the
solution value at any point on the two-dimensional artificial boundsgquires computing
a two-dimensional integral in space and time. Therefore using this boundary condition n
be more expensive than using the numerical scheme itself ifside

It is to avoid the various difficulties mentioned above that we developed the exact n
reflecting boundary condition for the special case wBeis a sphere [1]. Now we shall
show how to combine this boundary condition with the finite difference method, or wi
the finite element method, to obtain a computational problefa.isie shall also examine
the stability of the ordinary differential equations which occur in the boundary conditio
Finally, we shall solve numerically two standard test problems by using an explicit fini
difference method and the nonreflecting boundary condition. We shall also solve the s:
problems with the local boundary condition of Lysmer and Kuhlemeyer [7]. Comparist
of these solutions with the “exact” solution, obtained in a very large domain so that spt
ous reflections are postponed, shows that our boundary condition is much more accu
We also show that it remains accurate when the artificial boundary is moved closer to
scatterer, so that the computational domain is reduced.
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2. DISPLACEMENT FORMULATION

We consider time-dependent scattering from a bounded scattering region in thi
dimensional space. We surround this region by a spBeoé radius R. OutsideB, we
assume that the elastic medium is homogeneous and isotropic, with constant dgnsit
and Lan& constants. and . In addition, we assume that &= 0 the scattered field is
confined to the computational domdin the region outside the scatterer but insRle®©ut-

sideB3, the scattered displacement fieitk, t) thus satisfies the homogeneous elastic wav
equation [24],

82
3z —CVV u4CV xV xu=0, (1)
with initial conditions
au
u=0, — =0, t=0. (2)
ot

Herec, andcs are the propagation speeds of compressional waves and shear waves
spectively,

A+ 2
¢ = +M, cgz“. )
Lo L0
In ©, we consider the following initial-boundary value problem problem

82

8t2 —2uAU—AVV - Uu—uVxVxu=f inQx(@OT), 4)

au(x, 0
ot

u(x, 0) = uo(x), =Vo, X€Q. (5)
When f =0 andu, A, andp are constant, Eq. (4) is equivalent to (1). Bmve impose the
exact nonreflecting boundary condition derived by Grote and Keller [1],

ou u  loau@®  F U cp—Cs
— 4+ =+ +——
ar R ¢ ot Cp Ot

o N Cp —
Fx V x (fu')+ =2 AVANTLL

p
R Z Z {dh - YoVom+ a0 - ¥amUnm} + =5 R? Z Z bn - WnmYomf,

n>1|mi<n n>0 |m|<n

onBx (0, T), (6)

d 1
a'd)nm R Anwnm + (utan|r R Vnm)%, wnm(o) - O (7)
d 1 Cs (U, _R, Unm)en+1]

—¥m==B,¥ , Wm0 =0. 8
g TR [_Cp(ur|r=R»Ynm)en+l n®) ®)

Here we have introduced the polar coordinates ¢ and the unit vectorg 9, qB while u'
andu®™" denote the normal and tangential components=sf(u', u?, u?),

0 vy
ua=fu’ |, fu=]|0]. )
u? 0
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The ¢ coordinate corresponds to the angle from thaxis, ¢ € [0, ], whereas thep
coordinate corresponds to the polar angle in ¢key)-plane,¢ € [0, 2r). Furthermore,
Ynm denotes themth spherical harmonic normalized over the unit sphere,

Yom(®, ¢) = \/ (Zn; (?g;")’?')! PI™(cos)e™, n >0, |m| <n. (10)

If the problem considered is real, it is advantageous to use the real spherical hermot
given by the real and imaginary parts of (10). Then everything remains the same excep
the normalization constant in (10), which must be multiplied/®/for m # 0. The vector
spherical harmonicd,,,, andV,, are defined by

Unm(ﬁv ¢) =

rvy, 1 0Ynm - 1 9Yom -~
nm__ [ nmﬂ . nm¢:| ., n>1 (11)
Jnin+1) /nn+1)| 99 sing 9¢

Viom(®, @) = f x Upm=

1 ~1 Yams  Yoms] 12)
Jnin+1) [sinﬁ ) 3 ‘4’ =

They form an orthonormal basis for the space of tangehtidilelds on the unit sphere with
respect to thé, inner product ([25]). In (4) we assume thaandu are positive constants
and require thap = p(x) > 0. The source ternf (x, t, u, Vu) may be nonlinear.

Equation (6) is the exact nonreflecting boundary condition which was derived in [1].
involves the vector functiong,,(t) and ¥, (t), which are solutions of the linear first-
order ordinary differential equations (7) and (8). In (7) andg@is then-component unit
vector

en=1[1,0,...,0]". (13)
To simplify the definitions of the remaining quantities we first let
yn=n(N+1), n=>0. (14)

Thend, = {d,(j)} denotes the constantcomponent vector
d,,(j):%, i=1...n (15)

The constant ¢h + 1)-component vectora, andb, are given by

1 bl
ol

where the(n + 1)-component vectoral = {al(j)} anda = {a2(j)}, j=1,...,n+ 1, are

1}y = 1—1_CP/CS} 17

) = 3= 1o | i a7)
12

ag(j):M (18)

1+yi-1/vn’
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and the(n + 1)-component vectorst = {b1(j)} andb? = {b2(j)}, j = 1,...,n+1, are

. j(1+(j -1 c n
i) = 1A+ U = D/ T 19)
1+vyi-1/mn
. 1 j—(0-cs/Cpwn
P2(i) = | = + 20
n(D) =15 VT (20)
In (7) the constanh x n matrix A, = {An(, j)}is
—Cs¥n/2 ifi =1,
An(, ) = Cm—y)/>j+1) ifi=]j+1, (21)
0 otherwise

Finally, in (8) the constant(@ + 1) x 2(n + 1) matrix B, consists of the block partition

—csz!
CsSh 0
Bh=| —— |, (22)
—CpZy
0 CpTh

where the(n + 1)-component vector, = {z,(j)} is defined by

. j«/)/n .
z = — =1 ...,n+1 23
n(j) T+ vy 1/ j (23)

The(n+1) x (n+ 1) matrixS, ={S,(, j)} is

—¥n/2 ifi =1,
SEGED =+ —vi-)/RG+Dm+yi-0] ifi=j+1  (24)
0 otherwise

and the(n+ 1) x (n+ 1) matrix T, = {Ty(, j)} is

—[14+ 2]/ + vi—D]v/2 ifi =1,
T, D= Wn+vDWh —vi-0/I2 + D +yi-p] ifi=j+1 (25
0 otherwise.

The definitions ofA,, S,, Tn, dn, €, andz, coincide with those used in [1], except for an
improved scaling in inverse powers Bf suggested by Thompson and Huan [26] for the
scalar wave equation. This new scaling has no effeRt# 1. The constanta?, a2, b!, and
bﬁ were previously denoted in [1] by,, p,, bn, anda,, respectively.

The somewhat special case= 0 corresponds to the Oth Fourier component of the dis
placement field, which consists of a spherically symmetric compression was@' (r, t).
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Thus the first component @, vanishes and the only nonzero constants needed in (6) a

(8) forn=0 are
0 0 O
Po= L] Bo = [O _Cp} (26)

Suppose that the initial value problem (4)—(5), withreplaced by the entire unbounded
region outside the scatterer, has a unique smooth solution. Then so does the initial-boun
value problem (4)—(8) and the two solutions coincidefin([1]). The Cauchy problem
(4)—(5), with replaced by the unbounded region outside the scatteref an@, is well
posed with respect to the initial datg andvy. Since its solution coincides with that of the
initial-boundary value problem (4)—(8), we immediately conclude that (4)—(8) is well pos
with respect talp andug when f =0.

3. FINITE ELEMENT FORMULATION

We shall now derive the weak formulation of (4)—(8) in the computational doifain
First, we lety =[H(Q)]3, the Sobolev space of square-integrable vector functions wit
square-integrable first derivatives, and we denote by (., .) ang (he)L, inner products
overQ2 andB, respectively. To derive the weak formulation we multiply (4) by a test functiol
w and integrate ove®R. Then we use integration by parts to obtain

W, pdU) +2u(VW, VU) +A(V-W, V- u) + u(V x W, V x u) = W, f)4+w, THz. (27)
HereTT is the traction ori3,
R au o o
Tr=2ﬂa—r+MV-U+w><V><U- (28)

The traction requires a priori unknown radial derivatives ofvhich we shall now express
in terms of known quantities. First, we write (28) componentwise as

2\
(TP = 2u+ 1o u" + ﬁur + AV - ul (29)
~ytan tan utan tan, ,r
(TH* = p| dru R + vy, (30)

Similarly, we rewrite the boundary condition (6) as

r
u Cp—GCs tan r

1
U+ —gu + — V.ut"=¢d, 31
U+ c U+ R + c g (31)
1 ul" cp—
o utan+ 78tutan+ + p Csvtanur — gtan’ (32)
Cs R Cs

whereg(d, ¢, t) denotes the right side of (6). Next, we use (31) in (29) and (32) in (30) t
eliminateo, u. Thus,

2(cj —2c3)

= u" + cs(Cp — 265)V - U™, (33)

1
IO—(T?)r =50 —cparl’ +
0

tan

1 _.
E(Tr)tan — ngtan _ Csat utan _ Cg? _ CS(Cp _ zcs)vtanul’ . (34)
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To simplify the notation we define the two symmetric bilinear form3/on
Alw, v] = 2(VW, VW) + A(V - W, V- V) + u(V X W, V X V) + %(w‘a”, by

2\
- ﬁ(wr, V) + Cs(Cp — 265) po(W2", VAW )5 + (VW' VAN 5) - (35)

C[w, V] = Cppo(w", v" )5 + Cspo(W3", V@) 5. (36)

We remark that the nonreflecting boundary condition affects the bilinear fownly
if the supports of bottv andw contain part of the artificial boundadg. Similarly, the
bilinear formC is zero except for functiong andw whose support intersects We now
replace the traction in (27) by using (33) and (34) and collect terms that inupbze, or
du. Moreover, by applying integration by parts o8y we replace—(w', V - u®z by
(V%" uM; no additional boundary integral appears becdtibas no boundary. These
calculations lead to the weak form of the problem, which can be stated as follows:

Findu(t) € V such that for alw € V,

(w, pl) + C[w, U] + Alw, u]

21+ A
= (W, f) + MRZ Z Z b - ‘I'nm(wr, Ynm)

n=0 m|<n
-5 22 37 (o 0 Vo 20 B U], (30
(W, U(0, ) = (w, Uo). (38)
(W, U(0, ) = (w, vo), (39)
Bom = = Andam+ U g, Vamer,  Wm(©) = O, (40)
1 Cs(U™" | =R, Unm)€n1

‘i’nm = ﬁBn\I’nm + s ‘I’nm(o) =0. (41)

_Cp(ur |r:R, Ynm)en+1

The finite element method is obtained by approximating the weak form (37)—(41) ir
finite-dimensional subspadd c V. The domaire2 is discretized into a finite number of
elements, and each element is associated with a finite number of nodess &hdw are
approximated by

Ut = 7165 (%), (42)
ien
WX ) =) wi O (x). (43)

ien

Heren is the set of indices representing the degrees of freedom™az (t) andw; are
coefficients, an®; (x) are suitable shape functions associated with riotiée denote by
B C nthe set of indices representing degrees of freedom corresponding to ndsidsext,
we substitute (42) and (43) in (37)—(41), with the sums omeuncated at some finite value
N, and require the resulting equations to hold for all values)ofThis yields the finite
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element matrix form of the problem for the vector of unknow¢is = {z ()}:

Mz + Cz+Kz= f (44)
. 1
Ynm = An",bnm + Z Z ®tan r R’ V”m)a"’ Yam(0) =0, (45)
iep
. 1 Cs(g'tan| R’ Unm)enJrl
T = =Bn¥om+ Y7 R . Um0 =0  (46)
icp _Cp<®i |r:R’ Ynm)en+1
20) = 7 (47)
2(0) = 7. (48)

The matrice = {M(i, j)}, C={C(i, j)}, andK ={K (i, j)} are defined by
MG, j) = (0O;,©)), C(, ) =C[6,0)], K, ]| =A6;0))]. (49)

The vectors = { (i)}, z = {zo(i)}, andzo = {Zo(i)} are defined by

. 26+ A
fi) = @0+ L2337 by Wam(OF, Yom) (50)

n>0 |m|<n

N
— 5522 D" {th - Yam(OF Vi) + 8- Lo (O, Unn) .
n=1|mj=<n

20(i) = (®i, Up), 2o(i) = (Oj, Vp). (51)

The quantities, 2, andZ are the displacement, the velocity, and the acceleration vectol
respectivelyM is the mass matriX is the stiffness matrix, an@ is a damping term. The
matrix C is almost empty, since only terms on the artificial boundary yield nonzero entrie
For the numerical integration of (44) one can use any suitable time-marching scheme, <
as the explicit central difference method. Then the solutions of (45) and (46) are compt
concurrently; here we recommend an implicit method, such as the trapezoidal rule, si
all the eigenvalues of the matricAg andB, lie in the left half of the complex plane—see
Sections 4 and 5. Further implementation details on the combination of the finite elem
method with nonreflecting boundary conditions for the scalar wave equation can be fol
in [26].

4. FINITE DIFFERENCE METHOD

Instead of using the finite element method, we can use the finite difference methoc
solve (4)—(8). We shall now describe how to do this, choogitlQ = 1 in 2 for simplicity.
We opt for the finite difference method of Kelbt al. [27], which is a standard explicit
time-marching method for the simulation of elastic waves in rectangular coordinates. Tt
the elastic wave equation (4) is discretized both in space and in time by using second-o
accurate centered finite differences. To simplify the imposition of the boundary conditi
at B, we adapt the scheme of Kelbt al. [27] to spherical geometry by discretizing (4)
throughoutQ in spherical coordinates.
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At B we use the boundary condition (6) to advance the numerical solution from tir
tx to timety, 1 =ty + At. The right side of (6) involves infinite sums, which are truncatec
at a finite valueN. It requires the values ap,,,(t) and ¥, (1) at timet,. The amount of
memory needed to store them, abol*Xcalar values, is negligible when compared to the
storage required farinside2. Both,,,,(t) and®¥ () are computed concurrently with the
solutioninside, using the linear ordinary differential equations (7) and (8). We apply (6)
t =tx andr = R, and approximate both time and tangential derivatives by centered seco
order accurate finite differences. The radial derivatives in (6) are approximated by one-si
second-order accurate finite differences. These are not evaluated,abut instead ati,_;
andty_ 1, since their evaluation &t would lead to an unstable finite difference scheme. Thi
instability is not particular to elastic waves. It also arises with centered finite differen
approximations of the one-dimensional scalar wave equakion uyx =0 together with
the nonreflecting boundary condition+ uy =0.

We now describe the finite difference approximation used at the boundary for the rac
component of the nonreflecting boundary condition. The inner product of (6¥witids

8u’+ur+18ur+cp—csv gt — 12N:Zb WY, (52)
ar R ' cp ot Cp T R? oo nmenm
n>0 [m|<n
which we rewrite as
1/0 190 ;
——+—=—][ru'] =0, r=R 53
R(8r+cpat)[ I=9 (53)

Hereg=g(v, ¢, t) contains the remaining tangential derivativesi8f and the sum over
n. We remark that (53) witlg = 0 is the exact nonreflecting boundary condition for spher
ically symmetric acoustic waves. In contrast, for spherically symmetric elastic waves
fu'(r,t), g(t) does not vanish in (53) becaud®(t) is not identically zero—see Section 2.
Next, we letU ¥ denote the numerical solution for the radial displaceréat timet, and
gX denote the numerical approximationgét timet,; bothU* andg® are known. Further-
more, we let; = R denote théth grid point in the radial direction. Hence, 1 = R— Ar
andr, _, = R— 2Ar. As mentioned above, we approximate the time derivative by center
finite differences abouk. The radial derivative aj = R andt =ty is approximated by av-
eraging the one-sided finite differences evaluateg atandty, 1. This yields the following
finite difference update for the radial displacemU[‘ﬁrl atB:

1 3 MN-1 _
Uk+l: _ Uk Uk+l Uk 1
! chpm 4Ar) "\ Rar (U= +U5)
-2 k+1 k-1 k 1 3
- U U S 54
(4RAr)( 2t |_2)+g}/[ZCpAt+4Ar (4)

The discretization of the tangential components of (6) parallels that described above
the radial component and leads to similar finite difference formulas.

To solve (7) and (8) numerically, we opt for the trapezoidal rule, because the eigenval
of the matricesA, andB,, lie in the left half of the complex plane (see Section 5). Sinc
the trapezoidal rule is unconditionally stable, there is no restriction on the time step in
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integration of (7) and (8). The trapezoidal rule approximation of (7) is

At At At
(I - ﬁAn) kil (I + ﬁAO oK 4 7[(uk+uk+1|,=R, Viom)]en. (55)

The trapezoidal rule approximation of (8) is

| —EB okl (] —I—EB ok +§ Cs(Uk + Uk+l|r:R, Unm)€nt1 (56)
2R ") Tm T 2R ") MM 2 | e (F - (UkH 4 UK Y,
Co(f - (U™ + U9 =R, Ynm)€n+1

Theinner productsin (7) and (8) are computed over the spherg using the fourth order
Simpson rule. The work required in solving the linear systems (55) and (56) is negligib
because the matrices involved are very small; furthermore they remain constant in tim
At remains constant.

The complete algorithm proceeds as follows:

ALGORITHM 1.

0. Initialize u atty andt;, and set),,, = 0 and¥,,, = 0 atty andt;.

1. Computeu**t? at t,,; =t + At at all inner points of2 using the difference form
of (4).

2. Computeu*** atty,; andr = R using (54) foru" and two similar equations, obtained
from (6) applied at = R andt = t, for u®@".

3. Compute@bﬁ?;l and\Ilﬁ;ql atty, 1 using (55) and (56), respectively, and return to 1.

Most of the work involved in applying the boundary condition results from computin
the inner products oveB on the right side of (6). To compute the inner products it is
not necessary to compu@ (N?) inner products over the entire sphere. Indeed, since tr
spherical harmonictnm, Vim, and Y,m Separate ir® and ¢, it is sufficient to compute
O(N) inner products with casng) and sirim¢) over the sphere and then to compute
O(N?) one-dimensionahner products ir# over [0, 7]. The same method can be used to
calculate the sums overandm on the right side of (7) and (8). In all our computations we
have foundN < 25 to be sufficient. If very large values &f were needed, the work and
storage required could be reduced by an order of magnitude by combining the fast disc
polynomial transform of Driscolét al. [28] with the recent work of Alperet al. [29] on
the approximation of boundary integral kernels—see also Hagstrom [30].

5. STABILITY

When used in computation, the boundary condition is approximated numerically. Tl
introduces both discretization errors and rounding errors, which can trigger numerical in:
bility. We shall now discuss the stability of the first-order systems of ordinary differenti
equations (7) and (8), which are used to compute the auxilliary quaniitigst) and
Wim(t).

The stability of the ordinary differential equation (7) is determined by the eigenvalues
An. In[3] we showed that the eigenvaluesfof, here scaled by, strictly lie in the left half
of the complex plane and that the differential equation (7) is asymptotically stable. In fa
asn increases the maximal real part of the eigenvalue8,pmoves farther away from the
imaginary axis. This results in a stronger obliteration of past values,@ft) for higher
Fourier modegn, m) of the displacement of.
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The stability of the ordinary differential equation (8) is determined by the eigenve
ues ofB,. For n> 1, the matrixB,, has a zero eigenvalue with associated eigenvecitt
v={N(jLij=1...,2(n+1D),

-1 if j =n+1,
v()=<K/n/In¥1) if j=2n+1), (57)
0 otherwise.

Moreover, there exists a second veatotinearly independent of, such thaB,w=. Itis

—1/¢cs if j=n,

1/cs if j=n+4+1,
w(j)=qv/n/n+D/c, ifj=2n+1, (58)

AT D/c, if | =2n+1),

0 otherwise.

Thus (Bp)?w=0 and the two-dimensional subspaée={v, w}, spanned by andw, is
invariant undeiB,,.

The 2x 2 Jordan block associated with the zero eigenvaluBrofould possibly lead
to spurious linear growth in time. However, a direct calculation revealsathahdb, are
orthogonal to bottv andw. Moreover, the forcing term on the right side of (8) is clearly
orthogonal tov andw. Therefore, the component &, (t) in V plays no role in the
boundary condition (6).

Nevertheless, we shall show how to remove the superfluous invariant subspace
obtain an equivalent formulation, which is asymptotically stable fan.alb do so, we seek
a matrix representation of the projection\ét, the orthogonal complement of. First, we
find two othonormal vectorg, = {0:1(j)} andg, = {02(j)}, j =1, ..., 2(n+ 1), which are
orthogonal to botlv andw

(1+ [+ D3] /[n]) ™ if j =n,

a() =4 (1+ [n@]/[n+Dc2)) ™ ifj=2n+1, (59)
0 otherwise
—J@AFD/n(cp/cC if j=n,

J/n/(n+1)D if j=n4+1,
d(j) =4qC if j=2n+1, (60)
if j=2(n+12),
0 otherwise

where the constants andD are given by

2 2 21 -1/2
c_ {1+ (N + 1)(cp/Cs) N ( n N 1) <(n +1)c5 + nc§> } 6
n n+1 N(Cp — Cs)Cs

Z_{(n+1)c%+m§]c ©2)

N(Cp — Cs)Cs



342

MARCUS J. GROTE

Next, we letQ, denote the th 4 1) x 2n matrix, whose columns form an orthonormal basis

of V+:

an

01

07}

(63)

The upper left and the middle right blocks@f correspond to twén — 1) x (n — 1) identity
matrices. The: symbols denote the nonzero entriegjjrandgs.

We now let

Bn = Qs BnQy,

Tom(t) = Q) Tm(t), (64)

and multiply (8) byQ, from the left to obtain the equivalent linear system of ordinary

differential equations.

d
dt R

~ 1~ ~
—‘I’nm = _Bn‘I’nm+

Cs (U, g, Unm)€nt1
_Cp(ur [r=Rs Ynm)€n—1 ’

‘i’nm(o) =0. (65)

Here we have used the invarianceotinderB,, and tha‘QnT[enH, et =[ens1. en-1] .

We have calculated the eigenvalueggfand they are shown for= 10 in the left frame
of Fig. 1. We observe that all the eigenvaluegf here forn = 10, have strictly negative
imaginary parts. Furthermore, as shown in the right frame of Fig. 1, they tend to mc

10
X
X
5 X
x
* *
x
X
E o x x
X
X
% 5%
x
-5 »
X
X
-10 . . i
-10 -8 -6 -4 -2

Re

-3

+
+
+
+++++
R

10 15 20 25
n

FIG. 1. (left) The eigenvalues of the matr, for n=10, ¢, =1, andcs = 1/+/3. (right) The maximal real

part of the eigenvalues &, as a function of.
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farther away from the imaginary axis with increasingAgain this results in a stronger
obliteration of past values oilnm(t) for higher Fourier mode&, m) of the displacement
on B. We verified numerically that different,/cs ratios always lead to the same con-
clusion. Thus, by removing the two-dimensional irrelevant subspaessociated with
the zero eigenvalue, we have obtained the equivalent differential equation (65), whic
asymptotically stable for all time. With

8=Qla,, by =Qlbn, (66)

the exact nonreflecting boundary condition is now given by (6) but &th,, and® n(t)
replaced bya,, b, and®¥ (1), respectively. We summarize the main results of this sectio
in the following proposition.

PrROPOSITIONS.1. Forn>1,letv, w, andQ, be defined by57), (58),and(63). Then

1. B,v=0, Byw=v, and Q,Q/ is the orthogonal projection on ¥, where V=
spanv, wj,

2. a,-v=by-v=a,-w=by -w=0,

3. Numerical calculations indicate that the eigenvalueégf: QnTBnQn have strictly
negative real parts.

The asymptotic stability of the ordinary differential equations (7) and (65) does n
necessarily imply the stability of the overall numerical scheme, which also depends on
discretization used both inside and at the artificial boundary [31]. Both formulations (8)
and (65) were implemented and they led to identical results.

Remark. For large values ofi, the problem of computing the eigenvalues of eithel
An, By, or By, is extremely ill-conditioned, so that meanigful results cannot be obtaine
even in double precision. This fact is of no consequence for the use of the nonreflec
boundary condition, because these eigenvalues are never needed—for further details
to ([3], Section 6).

6. NUMERICAL RESULTS

We shall now combine the finite-difference method with the nonreflecting bounde
condition (6), as described in Section 4, to evaluate its accuracy and convergence prope
First, we shall consider a model problem, for which the exact solution is known. Itis just
find the field of a transient point dipole source in a homogeneous medium. Second, we ¢
present computations for a standard test problem: scattering from a spherical cavity. E
problems are symmetric about thaxis and therefore is independent of. Moreover, the
¢-component ofl decouples from the- and-components afi in (1) and (6); itis governed
by a scalar wave equation. In [3] we have presented examples which show the accu
of this method for the scalar wave equation, and we have discussed storage requiren
and other computational issues. To avoid repetition, we shall seb-temponent ofu
to zero and focus on the main new feature of the nonreflecting boundary condition
elastic waves, namely the coupling of compression and shear modes thbqugh in (6)
and (8).
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6.1. Model Problem

We consider the displacement wave field produced by a time dependent dipole soL
P (), located atS, = (0, 0, z). If zg=0 the exact solution is

2
u(r, 9, t) = [(pp + gOP n 2909 +f( 2>]Y10(9)A 67)
G Cpf r r
_ s e oS Lo Uio(?)
[cz Tt J”/—( rzﬂ — (68)
where
$p = P(t—l’/Cp), ps = Pt —r/cy), (69)

andY;gandU;p are defined by (10) and (11), with= 1 andm = 0. Next, we shift the source
by a distancezy from the origin: now all Fourier modes of the solutiop,, are nonzero.
The time dependence of the source, shown in Fig. 2, is a Gaussian pulse centetdgl at

0 t <O,
P(t) = e ©0/" o<t <2, (70)
0 > 2t0.

We chooséy = 1 and set so thatP(t) is equal to 106 att = 0 andt = 2t,.

08 b

06 b

U]

0.2 b

FIG. 2. The time dependende(t) of the source.
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0=10°

0 = 180°

FIG.3. The computational domai? is shown drawn to scale, witly = 0.5 andR = 1. The source is located
atS = (0, 0, 0.4) for the model problem and & = (0, 0, 0.6) for scattering from a spherical cavity.

We impose the exact displacement at ro and compute its propagation outward up to
the artificial boundary = R. Because of the inherent symmetry, the computational doma
Q can be reduced to the two-dimensional regiprer < R, 0<# <, shown in Fig. 3.
Inside2 we use polar coordinates and a uniform mesh amd#. We nondimensionalize
the distance by the diameterydf the inner sphere and time bygZc,, the travel time of
a compression wave across the inner sphere. Thus0.5, ¢, = 1. Furthermore, we set
R=1andcs=1/+/3.

We shall compare the numerical solution using (6), where the sums are truncéted a
with that obtained using the “viscous” boundary condition of Lysmer and Kuhlemeyer [

ou'
T"4+¢c,— =0 71
+Cp ot (71)
au?
T 4+ Cs—at =0, (72)

inwhich T andT"? are the normal and shear stress, respectively. We denote the forr
by NBC(N), whereN indicates the upper limit in the sums, and the latter by L—K. The
boundary condition (6) is implemented as described in Section 4, glheit) = 0 because
u? is identically zero. A comparison of the exact nonreflecting boundary condition wi
higher order local boundary conditions was performed in [3] for the scalar wave equati
In Fig. 4 we check the accuracy and convergence rate of our numerical method. In the
frame the maximal error in thie,-norm over the time interval [0, 10] is shown versus the
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FIG. 4. (left) The maximal error in thé-, norm over the time interval [0, 15] is shown versus the mesh
parameterAr. (right) The maximal error is shown as a function of time for the finest @80 mesh used.

mesh parameteir, for the following sequence of meshes: 2020, 30x 180, 40x 240,
60 x 360, 80x 480, and 106 600. We observe the expected second-order convergen
rate of the full scheme using NBC(25) as the mesh is refined. This indicates that set
N = 25 ensures that the error introduced at the artifical boundary is smaller than that of
numerical scheme. However, the error in the numerical solution obtained with L—K bare
decreases as the meshisrefined, indicating that the error introduced by using L—K domin
the computation. Indeed, the numerical solution does not converge to the solution of
original problem, but instead converges to the solution of a different problem with L-
imposed ai3. To reduce the amount of spurious reflectiofSatne would need to increase
the size of2. In contrast, for the exact boundary condition, NBG, N can be chosen large
enough to reduce the error introduced3abelow the discretization error of the numerical
method inside2, without moving the artifical boundary farther away from the scattere
In the right frame of Fig. 4 we follow the evolution of the total errors in the 2-norm ove
Q, |lUexac(-> 1) — Unum(., ) [|2, which result from the use of L-K and NBC(25). We observe
that NBC(25) leads to an additional reduction in the error of two orders of magnituc
Moreover, the error in the numerical solution obtained with NBC(25) decays much fas
with increasing time once the transient wave field hasSkefThis indicates that using the
nonreflecting boundary condition may be useful even in calculations where the trans
field is of no interest, since the numerical solution may reach the final state much faste
Next, we compare the numerical solutions, obtained on the finest mesh using L—K :
NBC(25), with the exact solution at two different locations insitatr = 0.75: P, (6 = 30°)
andQ1(0 =150). The inner and outer radii remain at their current locatigns 0.5 and
R=1. In Fig. 5, they-component of the displacemauit is shown at the first locatioR;.
The numerical solution obtained with NBC(25) is hardly distinguishable from the exa
solution. While the relative error due to the L—K boundary condition lies within 20% of th
maximum of the exact solution &, this seemingly accurate behavior is deceptive. Indee
theselocally small reflections travel back into the computational domain and contamine
the solution everywhere inside, in particular in regions where the solution is of lesser
magnitude. To demonstrate this point, we select the next location farther away from
source af)q, where the displacement field is weaker. Theomponent of the displacement
atQ; is shownin Fig. 6, and again it agrees completely with the numerical solution obtain
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FIG.5. Model problem. The numerical solutions fat, computed using the boundary conditions L-K and
NBC(25), are compared with the exact solutiorPat
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FIG. 6. Model problem. The numerical solutions fot, computed using the boundary conditions L-K and
NBC(25), are compared with the exact solutiortat



348 MARCUS J. GROTE

using NBC(25). The solution obtained using L—K agrees with the exact solutiort up3o

It then diverges from it, as the spurious reflection due to the imposition of L—K reaches't
location. Since this spurious reflectionas large as the amplitude of the true solutian
Q1, the numerical solution with L-K imposed Btbecomes meaningless after 3.

6.2. Spherical cavity

We shall now compute the scattered field of a radially symmetric compression we
impinging upon a spherical cavity of radiug embedded in an infinite elastic medium.
At the free surface of the cavity the tractio is zero. The source is located nearby outs
the spherical obstacle & = (0, 0, zy), z > rg, at distancezyg from the origin. The time
dependence of the point load, shown in Fig. 2, is the same Gaussian pulse centere
time abouty = 1 and given by (70). Again, this problem is symmetric aboutzthgis and
theg-component ofiis identically zero. Next, we split the total displacement figidto the
incident field,u’, and the scattered field?, with u=u' 4+ us. The incident field is known
and can be found in [24], p. 475. Since the normal and shear stress components of the
displacement vanish at=r, the stress components of the scattered fiélsimply equal
those of the incident field, but with opposite sigijus]f = —T[u']?.

We nondimensionalize time and space as before ang,sefl, ¢s = 1/+/3,r0=0.5, and
Zo=0.6. Hence the sourc® is located at distance 0.1 away from the spherical cavity. Sinc
we do not have a simple analytic expression for the time dependent scattered field, we ¢
use the numerical solution in the infinite domain as our reference solution; we refer to it
theexact solutionTo compute it inside&2 we use a much larger domain which extends a:
far asr = 6. This enables us to compute the solution of the initial-boundary value proble
in the infinite region outside the cavity upte- 10. Indeed the truncation at= 6 will not
be sensed insid® until t =10.5.

Inside Q2 we use a 6 360 mesh, which we extend with constant mesh spaging
up tor =6. In Fig. 7 the contour lines for the displaceméumt of the exact solution are
shown att =5 forrg <r <5. The scattered field consists of various types of waves whic
propagate at different speeds. The impact above the north pole immediately creates a
compression wave moving upward, followed by a shear wave propagating away from
cavity. At the surface of the cavity, a Rayleigh wave propagates along longitudes dowr
the south pole, while its tail interacts in a complex pattern with the only slightly faster she
wave. The surface waves merge at the south pole at abobitas shown in Fig. 7, and then
pursue their journey around the cavity back to the north pole, and so forth, indefinitely.

We now compare the numerical solutions, obtained insideith L-K and NBC(25)
applied atB (R= 1), with the exact solution at two different locations on the free surface
P, (0 =30°) andQ, (8 = 150). In Fig. 8, the radial displacemeunt is shown at the first
location P,. The solution obtained using L—K agrees with the exact solution tip=t2.5.

It then diverges from it, as the spurious reflection due to the imposition of L—K reach
this location. To demonstrate the long-time accuracy of our method, we have magnified
scale and concentrate on the second wave packet, which arrisaoundt =7 after

travelling counter-clockwise around the entire cavity. At this stage, the main part of t
scattered field has lefe and the remaining part is of much smaller magnitude. Yet eve
after an entire trip around the cavity, the scattered field obtained with NBC(25) agrees |
fectly with that in the unbounded region. In contrast, the local boundary condition L-
has generated multiple spurious reflections which bounce back and forth between
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FIG. 7. Spherical cavity. Contour lines of the exact solution are showgr-=d8. The dotted circle in the center
shows the initial location of the spherical cavity.

sphere and the artificial boundary, and completely dominate the numerical solution at |
times.

Finally, we follow the evolution of thé*-component of the displacement@p, which
is located on the obstacle in the shadow region behind the cavity. Here the amplitud
the scattered field is of smaller magnitude. As depicted in Fig. 9, the numerical solut
obtained with NBC(25) follows the exact solution closely and cannot be distinguished fr
it. In contrast, the spurious reflections introduced by L—K at the outer boundalgrgee
than the true solutiomnd spoil the solution right up to the obstacle as they travel back in
Q. The accuracy of the numerical solution obtained with L—K remains poor in the shad
region and does not converge to the exact solution, as the underlying mesh is refinec
study the performance of the boundary conditions as the outer bouBdaumoved closer
tothe inner one, we now s&= 0.6. The mesh size remains identical, so that the mesh no
has 12x 360 points. In Fig. 10, thé-component of the displacement is again show@at
below the spherical cavity. Again, the numerical solution obtained using NBC(25) agr¢
with the exact solution; this demonstrates the robustness of the exact boundary cond
with respect to the location of the artifical boundary. The numerical solution obtained w
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FIG. 8. Spherical cavity. The numerical solutions f6r, computed using the boundary conditions L-K and
NBC(25) atR=1, are compared with the exact solutiorPat
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FIG. 9. Spherical cavity. The numerical solutions fot, computed using the boundary conditions L-K and
NBC(25) atR=1, are compared with the exact solution(at
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FIG. 10. Spherical cavity. The numerical solutions fgr, computed using the boundary conditions L-K and
NBC(25) atR=0.6, are compared with the exact solutiont

L—K agrees with the exact solution for a short time. It then strongly overshoots, complet
misses the subsequent arrival of the shear wave, and slowly starts to approach zero.

7. CONCLUSION

The exact nonreflecting boundary condition (6) has been found to be very accurat
numerical computations. It involves only first-order derivatives of the displacement, whi
makes it robust and easy to use. The boundary condition fits easily into finite-differet
methods and allows the artificial boundary to be brought as close as desired to the scat
It is easy to implement and requires little extra storage and computer time. It also
naturally into the variational formulation of the elastic wave equation; hence it is we
suited for use with the finite element method. Although the formulation is global over t
artificial boundary, itis explicit and does not require the solution of any large linear systern
only requires inner products with spherical harmonics of the displacement on the artifi
boundary. Although the artificial boundary must be spherical, the boundary conditior
not tied to any coordinate system, and the grid used inGidmn be arbitrary. With the
nonreflecting boundary condition the overall numerical scheme retains its optimal rate
convergence, as the error introduced at the artificial boundary can always be reduced b
the discretization error due to the numerical method in the interior computational dome
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