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An exact nonreflecting boundary condition was derived previously for time-
dependent elastic waves in three space dimensions [SIAM J. Appl. Math.60, 803
(2000)]. It is local in time, nonlocal on the artificial boundary, and involves only
first derivatives of the displacement. Here it is shown how to combine that bound-
ary condition with finite difference and finite element methods. Stability issues are
discussed. Numerical examples with a finite difference method demonstrate the high
improvement in accuracy over standard methods.c© 2000 Academic Press
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1. INTRODUCTION

We wish to calculate numerically the time dependent wave fieldu(x, t) scattered from
a bounded scattering region in an unbounded three-dimensional elastic medium. In this
region, there may be one or more scatterers and the equation for the displacementu may
have variable coefficients and nonlinear terms. As usual, we surround the scattering region
by an artificial boundaryB and confine the computation to the regionÄ bounded byB.
Then, to complete the formulation of the problem inÄ we require thatu satisfy a boundary
condition onB. The boundary conditions commonly imposed produce spurious reflection
fromB. To avoid this spurious reflection we have devised an exact nonreflecting boundary
condition [1]. It is the extension to the elastic wave equation of the exact nonreflecting
boundary condition which we derived for the scalar wave equation [2, 3] and for Maxwell’s
equations [4]. In doing so, we choseB to be a sphere of radiusR, and we assumed that the
elastic medium is homogeneous and isotropic outsideB. The boundary condition is local
in time and nonlocal onB, and it involves only first derivatives ofu onB.

Usually various approximate boundary conditions are used, which are local differential
operators onB—see for instance Givoli [5] or the recent review article by Tsynkov [6].
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Well-known examples are the “viscous” boundary conditions by Lysmer and Kuhlemeyer
[7], and the paraxial boundary conditions by Clayton and Engquist [8] and Engquist and
Majda [9, 10]. Higdon [11, 12] constructed absorbing boundary conditions, which perfectly
annihilate impinging waves at selected angles of incidence, but not at others, by combining
first-order differential operators in time and the normal space variable. Earlier, Lindman [13]
devised a nonlocal absorbing boundary condition for the scalar wave equation. It requires
solving the inhomogeneous wave equation on the artificial boundary a number of times.
Randall [14, 15] extended it to the elastic wave equation by applying the absorbing boundary
condition of Lindman to a decomposition of the displacement into potentials which satisfy
acoustic wave equations; this procedure requires at each time step a Fourier transform in
the tangential space variables.

A different approach to eliminating reflection has been to append an artificial transition
layer outsideB, which is supposed to absorb outgoing waves. Two popular methods for
doing this, the mapping technique [16] and the perfectly matched layer method [17], were
adapted recently to the absorbtion of elastic waves, and they yielded comparable results [18].

Neither the local boundary conditions nor the use of absorbing layers leads to complete
absorption of waves at all angles of incidence. Although most approximate boundary con-
ditions perform well at nearly normal incidence, their performance degrades rapidly as
grazing incidence is approached. In complex situations the scattered waves arrive at the ar-
tificial boundary from all interior angles and at all frequencies, so these methods then yield
some spurious reflection. Moreover, errors due to spurious reflection accumulate with time
and prevent accurate long-time integration. Thus it is often necessary to moveB far from
the region of interest, or to use a thick absorbing layer, to reduce the amount of reflection
below a few percent and to achieve high accuracy. Another difficulty is that approximate
boundary conditions can result in ill-posed formulations—see Howell and Trefethen [19].

Some of these difficulties are avoided by exact nonreflecting boundary conditions. In
the frequency domain, Givoli and Keller [20] derived a Dirichlet-to-Neumann map for two-
dimensional elastodynamics; it was further developed by Harari and Shohet [21]. In the time
domain, an exact nonreflecting boundary condition for the wave equation was proposed by
Ting and Miksis [22] and later implemented by Givoli and Cohen [23]. It is based on a
Kirchhoff integral representation of the solution onB and requires storing the solution at a
surface insideB for the length of time it takes a wave to propagate acrossÄ. To update the
solution value at any point on the two-dimensional artificial boundaryB requires computing
a two-dimensional integral in space and time. Therefore using this boundary condition may
be more expensive than using the numerical scheme itself insideÄ.

It is to avoid the various difficulties mentioned above that we developed the exact non-
reflecting boundary condition for the special case whenB is a sphere [1]. Now we shall
show how to combine this boundary condition with the finite difference method, or with
the finite element method, to obtain a computational problem inÄ. We shall also examine
the stability of the ordinary differential equations which occur in the boundary condition.
Finally, we shall solve numerically two standard test problems by using an explicit finite
difference method and the nonreflecting boundary condition. We shall also solve the same
problems with the local boundary condition of Lysmer and Kuhlemeyer [7]. Comparison
of these solutions with the “exact” solution, obtained in a very large domain so that spuri-
ous reflections are postponed, shows that our boundary condition is much more accurate.
We also show that it remains accurate when the artificial boundary is moved closer to the
scatterer, so that the computational domain is reduced.
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2. DISPLACEMENT FORMULATION

We consider time-dependent scattering from a bounded scattering region in three-
dimensional space. We surround this region by a sphereB of radius R. OutsideB, we
assume that the elastic medium is homogeneous and isotropic, with constant densityρ0

and Lamé constantsλ andµ. In addition, we assume that att = 0 the scattered field is
confined to the computational domainÄ, the region outside the scatterer but insideB. Out-
sideB, the scattered displacement fieldu(x, t) thus satisfies the homogeneous elastic wave
equation [24],

∂2u
∂t2
− c2

p∇∇ · u+ c2
s∇ × ∇ × u = 0, (1)

with initial conditions

u = 0,
∂u
∂t
= 0, t = 0. (2)

Herecp andcs are the propagation speeds of compressional waves and shear waves, re-
spectively,

c2
p =

λ+ 2µ

ρ0
, c2

s =
µ

ρ0
. (3)

In Ä, we consider the following initial-boundary value problem problem

ρ
∂2u
∂t2
− 2µ1u− λ∇∇ · u− µ∇ × ∇ × u = f, in Ä× (0, T), (4)

u(x, 0) = u0(x),
∂u(x, 0)
∂t

= v0, x ∈ Ä. (5)

When f = 0 andµ, λ, andρ are constant, Eq. (4) is equivalent to (1). OnB we impose the
exact nonreflecting boundary condition derived by Grote and Keller [1],

∂u
∂r
+ u

R
+ 1

cs

∂utan

∂t
+ r̂

cp

∂ur

∂t
+ cp − cs

cs
r̂ ×∇ × (r̂ur )+ cp − cs

cp
r̂∇ · utan

=− 1

R2

∑
n≥1

∑
|m|≤n

{dn ·ψnmVnm+ an ·ΨnmUnm} + 1

R2

∑
n≥0

∑
|m|≤n

bn ·ΨnmYnmr̂,

onB × (0, T), (6)

d

dt
ψnm =

1

R
Anψnm+ (utan|r=R,Vnm)en, ψnm(0) = 0, (7)

d

dt
Ψnm = 1

R
BnΨnm+

[
cs(utan|r=R,Unm)en+1

−cp(ur |r=R,Ynm)en+1

]
, Ψnm(0) = 0. (8)

Here we have introduced the polar coordinatesr, ϑ, φ and the unit vectorŝr, ϑ̂, φ̂, whileur

andutan denote the normal and tangential components ofu= (ur , uϑ , uφ),

utan=

 0

uϑ

uφ

 , r̂ur =

ur

0

0

 . (9)
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The ϑ coordinate corresponds to the angle from thez axis, ϑ ∈ [0, π ], whereas theφ
coordinate corresponds to the polar angle in the(x, y)-plane,φ ∈ [0, 2π). Furthermore,
Ynm denotes thenmth spherical harmonic normalized over the unit sphere,

Ynm(ϑ, φ) =
√
(2n+ 1)(n− |m|)!

4π(n+ |m|)! P|m|n (cosϑ)eimφ, n ≥ 0, |m| ≤ n. (10)

If the problem considered is real, it is advantageous to use the real spherical hermonics,
given by the real and imaginary parts of (10). Then everything remains the same except for
the normalization constant in (10), which must be multiplied by

√
2 for m 6= 0. The vector

spherical harmonicsUnm andVnm are defined by

Unm(ϑ, φ) = r∇Ynm√
n(n+ 1)

= 1√
n(n+ 1)

[
∂Ynm

∂ϑ
ϑ̂ + 1

sinϑ

∂Ynm

∂φ
φ̂

]
, n ≥ 1 (11)

Vnm(ϑ, φ) = r̂ × Unm = 1√
n(n+ 1)

[ −1

sinϑ

∂Ynm

∂φ
ϑ̂ + ∂Ynm

∂ϑ
φ̂

]
, n ≥ 1. (12)

They form an orthonormal basis for the space of tangentialL2 fields on the unit sphere with
respect to theL2 inner product ([25]). In (4) we assume thatλ andµ are positive constants
and require thatρ= ρ(x)>0. The source termf (x, t, u,∇u) may be nonlinear.

Equation (6) is the exact nonreflecting boundary condition which was derived in [1]. It
involves the vector functionsψnm(t) andΨnm(t), which are solutions of the linear first-
order ordinary differential equations (7) and (8). In (7) and (8)en is then-component unit
vector

en = [1, 0, . . . ,0]>. (13)

To simplify the definitions of the remaining quantities we first let

γn = n(n+ 1), n ≥ 0. (14)

Thendn={dn( j )} denotes the constantn-component vector

dn( j ) = j γn

2
, j = 1, . . . ,n, (15)

The constant 2(n+ 1)-component vectorsan andbn are given by

an =
[

a1
n

a2
n

]
, bn =

[
b1

n

b2
n

]
, (16)

where the(n+ 1)-component vectorsa1
n={a1

n( j )} anda2
n={a2

n( j )}, j = 1, . . . ,n+ 1, are

a1
n( j ) =

[
1

2
− 1− cp/cs

1+ γ j−1/γn

]
j γn, (17)

a2
n( j ) =

√
γn j 2cp/cs

1+ γ j−1/γn
, (18)
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and the(n+ 1)-component vectorsb1
n={b1

n( j )} andb2
n={b2

n( j )}, j = 1, . . . ,n+ 1, are

b1
n( j ) = j (1+ ( j − 1)cs/cp)

√
γn

1+ γ j−1/γn
, (19)

b2
n( j ) =

[
1

2
+ j − (1− cs/cp)γn

γn + γ j−1

]
j γn. (20)

In (7) the constantn× n matrixAn={An(i, j )} is

An(i, j ) =


−csγn/2 if i = 1,

cs(γn − γ j )/(2( j + 1)) if i = j + 1,

0 otherwise.

(21)

Finally, in (8) the constant 2(n+ 1)× 2(n+ 1) matrixBn consists of the block partition

Bn =


−csz>n

csSn 0

−cpz>n
0 cpTn

 , (22)

where the(n+ 1)-component vectorzn={zn( j )} is defined by

zn( j ) = j
√
γn

1+ γ j−1/γn
, j = 1, . . . ,n+ 1. (23)

The(n+ 1)× (n+ 1) matrixSn={Sn(i, j )} is

Sn(i, j ) =


−γn/2 if i = 1,

(γn + γ j )(γn − γ j−1)/[2( j + 1)(γn + γ j−1)] if i = j + 1,

0 otherwise,

(24)

and the(n+ 1)× (n+ 1) matrixTn={Tn(i, j )} is

Tn(i, j ) =


−[1+ 2 j/(γn + γ j−1)]γn/2 if i = 1,

(γn + γ j )(γn − γ j−1)/[2( j + 1)(γn + γ j−1)] if i = j + 1,

0 otherwise.

(25)

The definitions ofAn, Sn, Tn, dn, en, andzn coincide with those used in [1], except for an
improved scaling in inverse powers ofR, suggested by Thompson and Huan [26] for the
scalar wave equation. This new scaling has no effect ifR= 1. The constantsa1

n, a
2
n, b

1
n, and

b2
n were previously denoted in [1] byqn, pn, bn, andan, respectively.
The somewhat special casen= 0 corresponds to the 0th Fourier component of the dis-

placement field, which consists of a spherically symmetric compression wave,u= r̂ur (r, t).
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Thus the first component ofΨ0 vanishes and the only nonzero constants needed in (6) and
(8) for n= 0 are

b0 =
[
0
1

]
, B0 =

[
0 0
0 −cp

]
. (26)

Suppose that the initial value problem (4)–(5), withÄ replaced by the entire unbounded
region outside the scatterer, has a unique smooth solution. Then so does the initial-boundary
value problem (4)–(8) and the two solutions coincide inÄ ([1]). The Cauchy problem
(4)–(5), withÄ replaced by the unbounded region outside the scatterer andf ≡ 0, is well
posed with respect to the initial datau0 andv0. Since its solution coincides with that of the
initial-boundary value problem (4)–(8), we immediately conclude that (4)–(8) is well posed
with respect tou0 andu0 when f = 0.

3. FINITE ELEMENT FORMULATION

We shall now derive the weak formulation of (4)–(8) in the computational domainÄ.
First, we letV = [H1(Ä)]3, the Sobolev space of square-integrable vector functions with
square-integrable first derivatives, and we denote by (., .) and (., .)B the L2 inner products
overÄ andB, respectively. To derive the weak formulation we multiply (4) by a test function
w and integrate overÄ. Then we use integration by parts to obtain

(w, ρ∂t t u)+2µ(∇w,∇u)+λ(∇ ·w,∇ ·u)+µ(∇ ×w,∇ ×u)= (w, f )+ (w,Tr̂)B. (27)

HereTr̂ is the traction onB,

Tr̂ = 2µ
∂u

∂r
+ λr̂∇ · u+ µr̂ ×∇ × u. (28)

The traction requires a priori unknown radial derivatives ofu, which we shall now express
in terms of known quantities. First, we write (28) componentwise as

(Tr̂)r = (2µ+ λ)∂r u
r + 2λ

R
ur + λ∇ · utan, (29)

(Tr̂)tan= µ
(
∂r u

tan− utan

R
+∇ tanur

)
. (30)

Similarly, we rewrite the boundary condition (6) as

∂r u
r + 1

cp
∂t u

r + ur

R
+ cp − cs

cp
∇ · utan= gr , (31)

∂r utan+ 1

cs
∂tutan+ utan

R
+ cp − cs

cs
∇ tanur = gtan, (32)

whereg(ϑ, φ, t) denotes the right side of (6). Next, we use (31) in (29) and (32) in (30) to
eliminate∂r u. Thus,

1

ρ0
(Tr̂)r = c2

pgr − cp∂t u
r + 2

(
c2

p − 2c2
s

)
R

ur + cs(cp − 2cs)∇ · utan, (33)

1

ρ0
(Tr̂)tan= c2

sgtan− cs∂tutan− c2
s

utan

R
− cs(cp − 2cs)∇ tanur . (34)
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To simplify the notation we define the two symmetric bilinear forms onV:

A[w, v] = 2µ(∇w,∇v)+ λ(∇ · w,∇ · v)+ µ(∇ × w,∇ × v)+ µ
R
(wtan, vtan)B

− 2λ

R
(wr , vr )B + cs(cp − 2cs)ρ0((wtan,∇ tanvr )B + (∇ tanwr , vtan)B) (35)

C[w, v] = cpρ0(w
r , vr )B + csρ0(wtan, vtan)B. (36)

We remark that the nonreflecting boundary condition affects the bilinear formA only
if the supports of bothv and w contain part of the artificial boundaryB. Similarly, the
bilinear formC is zero except for functionsv andw whose support intersectsB. We now
replace the traction in (27) by using (33) and (34) and collect terms that involveu, ∂tu, or
∂t tu. Moreover, by applying integration by parts overB, we replace−(wr ,∇ · utan)B by
(∇ tanwr , utan)B; no additional boundary integral appears becauseB has no boundary. These
calculations lead to the weak form of the problem, which can be stated as follows:

Findu(t)∈V such that for allw ∈V,

(w, ρü)+ C[w, u̇] +A[w, u]

= (w, f )+ 2µ+ λ
R2

∑
n≥0

∑
|m|≤n

bn ·Ψnm(w
r ,Ynm)B

− µ

R2

∑
n≥1

∑
|m|≤n

{dn ·ψnm(w
tan,Vnm)B + an ·Ψnm(wtan,Unm)B}, (37)

(w, u(0, ·)) = (w, u0), (38)

(w, u̇(0, ·)) = (w, v0), (39)

ψ̇nm = 1

R
Anψnm+ (utan |r=R,Vnm)en, ψnm(0) = 0, (40)

Ψ̇nm = 1

R
Bn9nm+

[
cs(utan |r=R,Unm)en+1

−cp(ur |r=R,Ynm)en+1

]
, Ψnm(0) = 0. (41)

The finite element method is obtained by approximating the weak form (37)–(41) in a
finite-dimensional subspaceVh⊂V. The domainÄ is discretized into a finite number of
elements, and each element is associated with a finite number of nodes. Thenu andw are
approximated by

uh(x, t) =
∑
i∈η

zi (t)Θi (x), (42)

wh(x, t) =
∑
i∈η

wi Θi (x). (43)

Hereη is the set of indices representing the degrees of freedom foruh, zi (t) andwi are
coefficients, andΘi (x) are suitable shape functions associated with nodei . We denote by
β ⊂ η the set of indices representing degrees of freedom corresponding to nodes onB. Next,
we substitute (42) and (43) in (37)–(41), with the sums overn truncated at some finite value
N, and require the resulting equations to hold for all values ofwi . This yields the finite
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element matrix form of the problem for the vector of unknownsz(t)={zi (t)}:

Mz̈+ Cż+ Kz= f̃ (44)

ψ̇nm = 1

R
Anψnm+

∑
i∈β

zi
(
Θtan

i

∣∣
r=R

,Vnm
)
en, ψnm(0) = 0, (45)

Ψ̇nm = 1

R
BnΨnm+

∑
i∈β

zi

[
cs
(
Θtan

i

∣∣
r=R,Unm

)
en+1

−cp
(
Θr

i

∣∣
r=R,Ynm

)
en+1

]
, Ψnm(0) = 0 (46)

z(0) = z0 (47)

ż(0) = ż0. (48)

The matricesM ={M(i, j )},C={C(i, j )}, andK={K (i, j )} are defined by

M(i, j ) = (ρΘi ,Θ j ), C(i, j ) = C[Θi ,Θ j )], K (i, j ) = A[Θi ,Θ j )]. (49)

The vectors̃f ={ f̃ (i )}, z0={z0(i )}, andż0={ż0(i )} are defined by

f̃ (i ) = (Θi , f )+ 2µ+ λ
R2

N∑
n≥0

∑
|m|≤n

bn ·Ψnm
(
2r

i ,Ynm
)
B (50)

− µ

R2

N∑
n≥1

∑
|m|≤n

{
dn ·ψnm

(
Θtan

i ,Vnm
)
B + an ·Ψnm

(
Θtan

i ,Unm
)
B
}
,

z0(i ) = (Θi , u0), ż0(i ) = (Θi , v0). (51)

The quantitiesz, ż, andz̈ are the displacement, the velocity, and the acceleration vectors,
respectively.M is the mass matrix,K is the stiffness matrix, andC is a damping term. The
matrixC is almost empty, since only terms on the artificial boundary yield nonzero entries.
For the numerical integration of (44) one can use any suitable time-marching scheme, such
as the explicit central difference method. Then the solutions of (45) and (46) are computed
concurrently; here we recommend an implicit method, such as the trapezoidal rule, since
all the eigenvalues of the matricesAn andBn lie in the left half of the complex plane—see
Sections 4 and 5. Further implementation details on the combination of the finite element
method with nonreflecting boundary conditions for the scalar wave equation can be found
in [26].

4. FINITE DIFFERENCE METHOD

Instead of using the finite element method, we can use the finite difference method to
solve (4)–(8). We shall now describe how to do this, choosingρ(x)= 1 inÄ for simplicity.
We opt for the finite difference method of Kellyet al. [27], which is a standard explicit
time-marching method for the simulation of elastic waves in rectangular coordinates. Then
the elastic wave equation (4) is discretized both in space and in time by using second-order
accurate centered finite differences. To simplify the imposition of the boundary condition
at B, we adapt the scheme of Kellyet al. [27] to spherical geometry by discretizing (4)
throughoutÄ in spherical coordinates.
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At B we use the boundary condition (6) to advance the numerical solution from time
tk to time tk+1= tk+1t . The right side of (6) involves infinite sums, which are truncated
at a finite valueN. It requires the values ofψnm(t) andΨnm(t) at timetk. The amount of
memory needed to store them, about 2N3 scalar values, is negligible when compared to the
storage required foru insideÄ. Bothψnm(t)andΨnm(t)are computed concurrently with the
solution insideÄ, using the linear ordinary differential equations (7) and (8). We apply (6) at
t = tk andr = R, and approximate both time and tangential derivatives by centered second-
order accurate finite differences. The radial derivatives in (6) are approximated by one-sided
second-order accurate finite differences. These are not evaluated att = tk, but instead attk−1

andtk+1, since their evaluation attk would lead to an unstable finite difference scheme. This
instability is not particular to elastic waves. It also arises with centered finite difference
approximations of the one-dimensional scalar wave equationutt − uxx= 0 together with
the nonreflecting boundary conditionut + ux = 0.

We now describe the finite difference approximation used at the boundary for the radial
component of the nonreflecting boundary condition. The inner product of (6) withr̂ yields

∂ur

∂r
+ ur

R
+ 1

cp

∂ur

∂t
+ cp − cs

cp
∇ · utan= 1

R2

N∑
n≥0

∑
|m|≤n

bn ·ΨnmYnm, (52)

which we rewrite as

1

R

(
∂

∂r
+ 1

cp

∂

∂t

)
[rur ] = g, r = R. (53)

Hereg= g(ϑ, φ, t) contains the remaining tangential derivatives ofutan and the sum over
n. We remark that (53) withg= 0 is the exact nonreflecting boundary condition for spher-
ically symmetric acoustic waves. In contrast, for spherically symmetric elastic wavesu=
r̂ur (r, t), g(t) does not vanish in (53) becauseΨ0(t) is not identically zero—see Section 2.

Next, we letUk denote the numerical solution for the radial displacementur at timetk and
gk denote the numerical approximation ofg at timetk; bothUk andgk are known. Further-
more, we letrl = R denote thel th grid point in the radial direction. Hence,rl − 1= R−1r
andrl − 2= R− 21r . As mentioned above, we approximate the time derivative by centered
finite differences abouttk. The radial derivative atrl = R andt = tk is approximated by av-
eraging the one-sided finite differences evaluated attk−1 andtk+1. This yields the following
finite difference update for the radial displacementUk+1

l atB:

Uk+1
l =

[(
1

2cp1t
− 3

41r

)
Uk

l +
(

rl−1

R1r

)(
Uk+1

l−1 +Uk−1
l−1

)
−
(

rl−2

4R1r

)(
Uk+1

l−2 +Uk−1
l−2

)+ gk

]/[
1

2cp1t
+ 3

41r

]
. (54)

The discretization of the tangential components of (6) parallels that described above for
the radial component and leads to similar finite difference formulas.

To solve (7) and (8) numerically, we opt for the trapezoidal rule, because the eigenvalues
of the matricesAn andBn lie in the left half of the complex plane (see Section 5). Since
the trapezoidal rule is unconditionally stable, there is no restriction on the time step in the
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integration of (7) and (8). The trapezoidal rule approximation of (7) is(
I − 1t

2R
An

)
ψk+1

nm =
(

I + 1t

2R
An

)
Ψk

nm+
1t

2
[(uk + uk+1|r=R,Vnm)]en. (55)

The trapezoidal rule approximation of (8) is(
I−1t

2R
Bn

)
Ψk+1

nm =
(

I+1t

2R
Bn

)
Ψk

nm+
1t

2

[
cs(uk + uk+1|r=R,Unm)en+1

−cp(r̂ · (uk+1+ uk)|r=R,Ynm)en+1

]
(56)

The inner products in (7) and (8) are computed over the spherer = Rusing the fourth order
Simpson rule. The work required in solving the linear systems (55) and (56) is negligible,
because the matrices involved are very small; furthermore they remain constant in time if
1t remains constant.

The complete algorithm proceeds as follows:

ALGORITHM 1.

0. Initialize u at t0 andt1, and setψnm= 0 andΨnm= 0 att0 andt1.
1. Computeuk+1 at tk+1= tk+1t at all inner points ofÄ using the difference form

of (4).
2. Computeuk+1 at tk+1 andr = R using (54) forur and two similar equations, obtained

from (6) applied atr = R andt = tk, for utan.
3. Computeψk+1

nm andΨk+1
nm at tk+1 using (55) and (56), respectively, and return to 1.

Most of the work involved in applying the boundary condition results from computing
the inner products overB on the right side of (6). To compute the inner products it is
not necessary to computeO (N2) inner products over the entire sphere. Indeed, since the
spherical harmonicsUnm,Vnm, and Ynm separate inθ andφ, it is sufficient to compute
O(N) inner products with cos(mφ) and sin(mφ) over the sphere and then to compute
O(N2) one-dimensionalinner products inθ over [0, π ]. The same method can be used to
calculate the sums overn andm on the right side of (7) and (8). In all our computations we
have foundN ≤ 25 to be sufficient. If very large values ofN were needed, the work and
storage required could be reduced by an order of magnitude by combining the fast discrete
polynomial transform of Driscollet al. [28] with the recent work of Alpertet al. [29] on
the approximation of boundary integral kernels—see also Hagstrom [30].

5. STABILITY

When used in computation, the boundary condition is approximated numerically. This
introduces both discretization errors and rounding errors, which can trigger numerical insta-
bility. We shall now discuss the stability of the first-order systems of ordinary differential
equations (7) and (8), which are used to compute the auxilliary quantitiesψnm(t) and
Ψnm(t).

The stability of the ordinary differential equation (7) is determined by the eigenvalues of
An. In [3] we showed that the eigenvalues ofAn, here scaled bycs, strictly lie in the left half
of the complex plane and that the differential equation (7) is asymptotically stable. In fact,
asn increases the maximal real part of the eigenvalues ofAn moves farther away from the
imaginary axis. This results in a stronger obliteration of past values ofψnm(t) for higher
Fourier modes(n,m) of the displacement onB.
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The stability of the ordinary differential equation (8) is determined by the eigenval-
ues ofBn. For n≥ 1, the matrixBn has a zero eigenvalue with associated eigenvector
v={v( j )}, j = 1, . . . ,2(n+ 1),

v( j ) =


−1 if j = n+ 1,√

n/(n+ 1) if j = 2(n+ 1),

0 otherwise.

(57)

Moreover, there exists a second vectorw, linearly independent ofv, such thatBnw= v. It is

w( j ) =



−1/cs if j = n,

1/cs if j = n+ 1,√
n/(n+ 1)/cp if j = 2n+ 1,

−√n/(n+ 1)/cp if j = 2(n+ 1),

0 otherwise.

(58)

Thus (Bn)
2w= 0 and the two-dimensional subspaceV ={v,w}, spanned byv andw, is

invariant underBn.
The 2× 2 Jordan block associated with the zero eigenvalue ofBn could possibly lead

to spurious linear growth in time. However, a direct calculation reveals thatan andbn are
orthogonal to bothv andw. Moreover, the forcing term on the right side of (8) is clearly
orthogonal tov and w. Therefore, the component ofΨnm(t) in V plays no role in the
boundary condition (6).

Nevertheless, we shall show how to remove the superfluous invariant subspaceV and
obtain an equivalent formulation, which is asymptotically stable for alln. To do so, we seek
a matrix representation of the projection onV⊥, the orthogonal complement ofV . First, we
find two othonormal vectorsq1={q1( j )} andq2={q2( j )}, j = 1, . . . ,2(n+ 1), which are
orthogonal to bothv andw

q1( j ) =


(
1+ [(n+ 1)c2

p

]/[
nc2

s

])−1/2
if j = n,(

1+ [nc2
s

]/[
(n+ 1)c2

p

])−1/2
if j = 2n+ 1,

0 otherwise

(59)

q2( j ) =



−√(n+ 1)/n(cp/cs)C if j = n,
√

n/(n+ 1)D if j = n+ 1,

C if j = 2n+ 1,

D if j = 2(n+ 1),

0 otherwise,

(60)

where the constantsC andD are given by

C =
[
1+ (n+ 1)(cp/cs)

2

n
+
(

n

n+ 1
+ 1

)(
(n+ 1)c2

p + nc2
s

n(cp − cs)cs

)2]−1/2

, (61)

D = −
[
(n+ 1)c2

p + nc2
s

n(cp − cs)cs

]
C. (62)
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Next, we letQn denote the 2(n+ 1)× 2n matrix, whose columns form an orthonormal basis
of V⊥:

Qn =



1 0
. . . q1 q2 0

0 1
∗ ∗
∗

1 0

0
. . .

0 1
∗ ∗
∗ 0


. (63)

The upper left and the middle right blocks ofQn correspond to two(n− 1)× (n− 1) identity
matrices. The∗ symbols denote the nonzero entries inq1 andq2.

We now let

B̃n = Q>n BnQn, Ψ̃nm(t) = Q>n Ψnm(t), (64)

and multiply (8) byQ>n from the left to obtain the equivalent linear system of ordinary
differential equations.

d

dt
Ψ̃nm = 1

R
B̃nΨ̃nm+

[
cs(utan|r=R,Unm)en+1

−cp(ur |r=R,Ynm)en−1

]
, Ψ̃nm(0) = 0. (65)

Here we have used the invariance ofV underBn and thatQ>n [en+1, en+1]> = [en+1, en−1]>.
We have calculated the eigenvalues ofB̃n and they are shown forn= 10 in the left frame

of Fig. 1. We observe that all the eigenvalues ofB̃n, here forn= 10, have strictly negative
imaginary parts. Furthermore, as shown in the right frame of Fig. 1, they tend to move

FIG. 1. (left) The eigenvalues of the matrix̃Bn for n= 10,cp= 1, andcs= 1/
√

3. (right) The maximal real
part of the eigenvalues of̃Bn as a function ofn.



NONREFLECTING BOUNDARY CONDITIONS 343

farther away from the imaginary axis with increasingn. Again this results in a stronger
obliteration of past values of̃Ψnm(t) for higher Fourier modes(n,m) of the displacement
on B. We verified numerically that differentcp/cs ratios always lead to the same con-
clusion. Thus, by removing the two-dimensional irrelevant subspaceV associated with
the zero eigenvalue, we have obtained the equivalent differential equation (65), which is
asymptotically stable for all time. With

ãn = Q>n an, b̃n = Q>n bn, (66)

the exact nonreflecting boundary condition is now given by (6) but withan, bn, andΨ̃nm(t)
replaced bỹan, b̃n andΨ̃nm(t), respectively. We summarize the main results of this section
in the following proposition.

PROPOSITION5.1. For n≥ 1, let v, w, andQn be defined by(57), (58),and(63).Then

1. Bnv= 0, Bnw= v, and QnQ>n is the orthogonal projection on V⊥, where V=
span{v,w},

2. an · v= bn · v= an · w= bn · w= 0,
3. Numerical calculations indicate that the eigenvalues ofB̃n=Q>n BnQn have strictly

negative real parts.

The asymptotic stability of the ordinary differential equations (7) and (65) does not
necessarily imply the stability of the overall numerical scheme, which also depends on the
discretization used both insideÄ and at the artificial boundary [31]. Both formulations (8)
and (65) were implemented and they led to identical results.

Remark. For large values ofn, the problem of computing the eigenvalues of either
An,Bn, or B̃n is extremely ill-conditioned, so that meanigful results cannot be obtained
even in double precision. This fact is of no consequence for the use of the nonreflecting
boundary condition, because these eigenvalues are never needed—for further details refer
to ([3], Section 6).

6. NUMERICAL RESULTS

We shall now combine the finite-difference method with the nonreflecting boundary
condition (6), as described in Section 4, to evaluate its accuracy and convergence properties.
First, we shall consider a model problem, for which the exact solution is known. It is just to
find the field of a transient point dipole source in a homogeneous medium. Second, we shall
present computations for a standard test problem: scattering from a spherical cavity. Both
problems are symmetric about thezaxis and thereforeu is independent ofφ. Moreover, the
φ-component ofu decouples from ther - andϑ-components ofu in (1) and (6); it is governed
by a scalar wave equation. In [3] we have presented examples which show the accuracy
of this method for the scalar wave equation, and we have discussed storage requirements
and other computational issues. To avoid repetition, we shall set theφ-component ofu
to zero and focus on the main new feature of the nonreflecting boundary condition for
elastic waves, namely the coupling of compression and shear modes throughΨnm(t) in (6)
and (8).
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6.1. Model Problem

We consider the displacement wave field produced by a time dependent dipole source,
P(t), located atS1= (0, 0, z0). If z0= 0 the exact solution is

u(r, ϑ, t) =
[
ϕ′′p
c2

p

+ 2ϕ′p
cpr
+ 2ϕp

r 2
+
√

2

(
ϕ′s
csr
+ ϕs

r 2

)]
Y10(ϑ)

r
r̂ (67)

−
[
ϕ′′s
c2

s

+ ϕ′s
csr
+ ϕs

r 2
+
√

2

(
ϕ′p
cpr
+ ϕp

r 2

)]
U10(ϑ)

r
, (68)

where

ϕp = P(t − r/cp), ϕs = P(t − r/cs), (69)

andY10 andU10 are defined by (10) and (11), withn= 1 andm= 0. Next, we shift the source
by a distancez0 from the origin: now all Fourier modes of the solutionunm are nonzero.
The time dependence of the source, shown in Fig. 2, is a Gaussian pulse centered att = t0:

P(t) =


0 t < 0,

e−(t−t0)2/σ 2
0≤ t ≤ 2t0,

0 t > 2t0.

(70)

We chooset0= 1 and setσ so thatP(t) is equal to 10−16 at t = 0 andt = 2t0.

FIG. 2. The time dependenceP(t) of the source.
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FIG. 3. The computational domainÄ is shown drawn to scale, withr0= 0.5 andR= 1. The source is located
at S1= (0, 0, 0.4) for the model problem and atS2= (0, 0, 0.6) for scattering from a spherical cavity.

We impose the exact displacement atr = r0 and compute its propagation outward up to
the artificial boundaryr = R. Because of the inherent symmetry, the computational domain
Ä can be reduced to the two-dimensional regionr0≤ r ≤ R, 0≤ϑ ≤π , shown in Fig. 3.
InsideÄ we use polar coordinates and a uniform mesh inr andϑ . We nondimensionalize
the distance by the diameter 2r0 of the inner sphere and time by 2r0/cp, the travel time of
a compression wave across the inner sphere. Thus,r0= 0.5, cp= 1. Furthermore, we set
R= 1 andcs= 1/

√
3.

We shall compare the numerical solution using (6), where the sums are truncated atN,
with that obtained using the “viscous” boundary condition of Lysmer and Kuhlemeyer [7],

Trr + cp
∂ur

∂t
= 0 (71)

Trϑ + cs
∂uϑ

∂t
= 0, (72)

in which Trr andTrϑ are the normal and shear stress, respectively. We denote the former
by NBC(N), whereN indicates the upper limit in the sums, and the latter by L–K. The
boundary condition (6) is implemented as described in Section 4, albeitψnm(t)≡ 0 because
uφ is identically zero. A comparison of the exact nonreflecting boundary condition with
higher order local boundary conditions was performed in [3] for the scalar wave equation.

In Fig. 4 we check the accuracy and convergence rate of our numerical method. In the left
frame the maximal error in theL2-norm over the time interval [0, 10] is shown versus the
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FIG. 4. (left) The maximal error in theL2 norm over the time interval [0, 15] is shown versus the mesh
parameter1r . (right) The maximal error is shown as a function of time for the finest 80× 480 mesh used.

mesh parameter1r , for the following sequence of meshes: 20× 120, 30× 180, 40× 240,
60× 360, 80× 480, and 100× 600. We observe the expected second-order convergence
rate of the full scheme using NBC(25) as the mesh is refined. This indicates that setting
N= 25 ensures that the error introduced at the artifical boundary is smaller than that of the
numerical scheme. However, the error in the numerical solution obtained with L–K barely
decreases as the mesh is refined, indicating that the error introduced by using L–K dominates
the computation. Indeed, the numerical solution does not converge to the solution of the
original problem, but instead converges to the solution of a different problem with L–K
imposed atB. To reduce the amount of spurious reflection atB one would need to increase
the size ofÄ. In contrast, for the exact boundary condition, NBC(N), N can be chosen large
enough to reduce the error introduced atB below the discretization error of the numerical
method insideÄ, without moving the artifical boundary farther away from the scatterer.
In the right frame of Fig. 4 we follow the evolution of the total errors in the 2-norm over
Ä, ‖uexact(., t)− unum(., t)‖2, which result from the use of L–K and NBC(25). We observe
that NBC(25) leads to an additional reduction in the error of two orders of magnitude.
Moreover, the error in the numerical solution obtained with NBC(25) decays much faster
with increasing time once the transient wave field has leftÄ. This indicates that using the
nonreflecting boundary condition may be useful even in calculations where the transient
field is of no interest, since the numerical solution may reach the final state much faster.

Next, we compare the numerical solutions, obtained on the finest mesh using L–K and
NBC(25), with the exact solution at two different locations insideÄatr = 0.75 : P1(θ = 30◦)
andQ1(θ = 150◦). The inner and outer radii remain at their current locationsr0= 0.5 and
R= 1. In Fig. 5, theϑ-component of the displacementuϑ is shown at the first locationP1.
The numerical solution obtained with NBC(25) is hardly distinguishable from the exact
solution. While the relative error due to the L–K boundary condition lies within 20% of the
maximum of the exact solution atP1, this seemingly accurate behavior is deceptive. Indeed
theselocally small reflections travel back into the computational domain and contaminate
the solution everywhere insideÄ, in particular in regions where the solution is of lesser
magnitude. To demonstrate this point, we select the next location farther away from the
source atQ1, where the displacement field is weaker. Theϑ-component of the displacement
atQ1 is shown in Fig. 6, and again it agrees completely with the numerical solution obtained
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FIG. 5. Model problem. The numerical solutions foruϑ , computed using the boundary conditions L–K and
NBC(25), are compared with the exact solution atP1.

FIG. 6. Model problem. The numerical solutions foruϑ , computed using the boundary conditions L–K and
NBC(25), are compared with the exact solution atQ1.
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using NBC(25). The solution obtained using L–K agrees with the exact solution up tot = 3.
It then diverges from it, as the spurious reflection due to the imposition of L–K reaches this
location. Since this spurious reflection isas large as the amplitude of the true solutionat
Q1, the numerical solution with L–K imposed atB becomes meaningless aftert = 3.

6.2. Spherical cavity

We shall now compute the scattered field of a radially symmetric compression wave
impinging upon a spherical cavity of radiusr0 embedded in an infinite elastic medium.
At the free surface of the cavity the tractio is zero. The source is located nearby outside
the spherical obstacle atS2= (0, 0, z0), z0> r0, at distancez0 from the origin. The time
dependence of the point load, shown in Fig. 2, is the same Gaussian pulse centered in
time aboutt0= 1 and given by (70). Again, this problem is symmetric about thez axis and
theφ-component ofu is identically zero. Next, we split the total displacement fieldu into the
incident field,ui , and the scattered field,us, with u= ui + us. The incident field is known
and can be found in [24], p. 475. Since the normal and shear stress components of the total
displacement vanish atr = r0, the stress components of the scattered fieldu5 simply equal
those of the incident field, but with opposite sign:T[us] r̂=−T[ui ] r̂.

We nondimensionalize time and space as before and setcp= 1, cs= 1/
√

3, r0= 0.5, and
z0= 0.6. Hence the sourceS2 is located at distance 0.1 away from the spherical cavity. Since
we do not have a simple analytic expression for the time dependent scattered field, we shall
use the numerical solution in the infinite domain as our reference solution; we refer to it as
theexact solution. To compute it insideÄ we use a much larger domain which extends as
far asr = 6. This enables us to compute the solution of the initial-boundary value problem
in the infinite region outside the cavity up tot = 10. Indeed the truncation atr = 6 will not
be sensed insideÄ until t = 10.5.

InsideÄ we use a 60× 360 mesh, which we extend with constant mesh spacing1r
up to r = 6. In Fig. 7 the contour lines for the displacement|u| of the exact solution are
shown att = 5 for r0≤ r ≤ 5. The scattered field consists of various types of waves which
propagate at different speeds. The impact above the north pole immediately creates a pure
compression wave moving upward, followed by a shear wave propagating away from the
cavity. At the surface of the cavity, a Rayleigh wave propagates along longitudes down to
the south pole, while its tail interacts in a complex pattern with the only slightly faster shear
wave. The surface waves merge at the south pole at aboutt = 5, as shown in Fig. 7, and then
pursue their journey around the cavity back to the north pole, and so forth, indefinitely.

We now compare the numerical solutions, obtained insideÄ with L–K and NBC(25)
applied atB (R= 1), with the exact solution at two different locations on the free surface:
P2 (θ = 30◦) andQ2 (θ = 150◦). In Fig. 8, the radial displacementur is shown at the first
locationP2. The solution obtained using L–K agrees with the exact solution up tot = 2.5.
It then diverges from it, as the spurious reflection due to the imposition of L–K reaches
this location. To demonstrate the long-time accuracy of our method, we have magnified the
scale and concentrate on the second wave packet, which arrives atP2, aroundt = 7 after
travelling counter-clockwise around the entire cavity. At this stage, the main part of the
scattered field has leftÄ and the remaining part is of much smaller magnitude. Yet even
after an entire trip around the cavity, the scattered field obtained with NBC(25) agrees per-
fectly with that in the unbounded region. In contrast, the local boundary condition L–K
has generated multiple spurious reflections which bounce back and forth between the
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FIG. 7. Spherical cavity. Contour lines of the exact solution are shown att = 5. The dotted circle in the center
shows the initial location of the spherical cavity.

sphere and the artificial boundary, and completely dominate the numerical solution at later
times.

Finally, we follow the evolution of theϑ-component of the displacement atQ2, which
is located on the obstacle in the shadow region behind the cavity. Here the amplitude of
the scattered field is of smaller magnitude. As depicted in Fig. 9, the numerical solution
obtained with NBC(25) follows the exact solution closely and cannot be distinguished from
it. In contrast, the spurious reflections introduced by L–K at the outer boundary arelarger
than the true solutionand spoil the solution right up to the obstacle as they travel back into
Ä. The accuracy of the numerical solution obtained with L–K remains poor in the shadow
region and does not converge to the exact solution, as the underlying mesh is refined. To
study the performance of the boundary conditions as the outer boundaryB is moved closer
to the inner one, we now setR= 0.6. The mesh size remains identical, so that the mesh now
has 12× 360 points. In Fig. 10, theϑ-component of the displacement is again shown atQ2

below the spherical cavity. Again, the numerical solution obtained using NBC(25) agrees
with the exact solution; this demonstrates the robustness of the exact boundary condition
with respect to the location of the artifical boundary. The numerical solution obtained with
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FIG. 8. Spherical cavity. The numerical solutions forur , computed using the boundary conditions L–K and
NBC(25) atR= 1, are compared with the exact solution atP2.

FIG. 9. Spherical cavity. The numerical solutions foruϑ , computed using the boundary conditions L–K and
NBC(25) atR= 1, are compared with the exact solution atQ2.
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FIG. 10. Spherical cavity. The numerical solutions foruϑ , computed using the boundary conditions L–K and
NBC(25) atR= 0.6, are compared with the exact solution atQ2.

L–K agrees with the exact solution for a short time. It then strongly overshoots, completely
misses the subsequent arrival of the shear wave, and slowly starts to approach zero.

7. CONCLUSION

The exact nonreflecting boundary condition (6) has been found to be very accurate in
numerical computations. It involves only first-order derivatives of the displacement, which
makes it robust and easy to use. The boundary condition fits easily into finite-difference
methods and allows the artificial boundary to be brought as close as desired to the scatterer.
It is easy to implement and requires little extra storage and computer time. It also fits
naturally into the variational formulation of the elastic wave equation; hence it is well-
suited for use with the finite element method. Although the formulation is global over the
artificial boundary, it is explicit and does not require the solution of any large linear system. It
only requires inner products with spherical harmonics of the displacement on the artificial
boundary. Although the artificial boundary must be spherical, the boundary condition is
not tied to any coordinate system, and the grid used insideÄ can be arbitrary. With the
nonreflecting boundary condition the overall numerical scheme retains its optimal rate of
convergence, as the error introduced at the artificial boundary can always be reduced below
the discretization error due to the numerical method in the interior computational domain.
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